
Course Project 4

Backreferences and NP-Completeness

CSE 30151 Spring 2025

Version of 2024-10-30
Due date: TBD

In this project, we return to grep and allow backreferences inside regular expressions themselves.
For example, in thef regular expression

((a|b)*)\g<1>

the backreference (\g<1>) must match a substring equal to the contents of group 1. Thus this
expression recognizes the language {ww | w ∈ {a, b}∗}. This new feature takes grep beyond regular
languages and even beyond context-free languages. In fact, you’ll show that this makes grep NP-
complete by implementing a SAT solver with it.

You will need a correct solution for CP3 to complete this project. If your CP3 doesn’t
work correctly (or you just weren’t happy with it), you may use the official solution or another
team’s solution, as long as you properly cite your source.

Getting started

The project repository should include the following files:

bin/

parse_re

bgrep

solve_sat

examples/

sipser-phi.cnf

unsat-2.cnf

random-1.cnf

...

tests/

test-cp4.sh

cp4/

Please place the programs that you write into the cp4/ subdirectory.

1 Backreferences: Syntax

Note: Part 1 should be done before Part 2, but Part 3 can be worked on independently of Parts
1–2.

1

CSE 30151 Spring 2025 Course Project 4

Extend your regular expression parser to allow backreferences. The syntax of backreferences is
the same as in the replacement strings of CP3. It’s probably easiest to treat each backreference as
a single terminal symbol, even though it contains multiple characters. That is, let Σ be as defined
in CP2, and redefine

T = Σ ∪ {|, *, (,),⊣} ∪ {\g<k> | k ≥ 1}.

To convert a string into a sequence of terminal symbols, add a preprocessing step (called a lexer)
that inputs a string and outputs a list of tokens, each of which is an element of T .

The grammar for regular expressions must now include backreferences, and treats them similarly
to ordinary symbols:

P → \g<k> for k ≥ 1

Correspondingly, extend the parse table with these new rows:

input parse stack semantic stack
read peek pop push pop push

ε \g<k> P \g<k> ε ε
\g<k> \g<k> ε ε backref(k)

Also note that several transitions have “peek” sets that include T , but the definition of T has
changed.

Here are some example regular expressions with their abstract syntax trees:

expression syntax tree

\g<99> backref(99)

\g<99>* star(backref(99))

To test your extension, update parse re from CP2 to handle backreferences. For example:

$ cp4/parse_re ’(a)\g<1>\g<1>’

concat(concat(group(1,symbol("a")),backref(1)),backref(1))

(If you want bin/parse_re to have this behavior, pass it the -g -b options.) Test by running
tests/test-cp4.sh.

2 Backreferences: Semantics

To understand backreferences in more detail, consider the expression

(a|b)*\g<1>

Note that, unlike the example at the beginning of this document, the star is now outside the group.
If group 1 matches multiple substrings, then, just as in CP3, it’s only the last substring whose
contents are used. Thus abb matches but aba does not.

On the other hand, if group 1 does not match any substrings, then nothing (not even the empty
string) can match \g<1>. So, if the input string is ε, group 1 does not match any substring. So
\g<1> cannot match anything, so the input string does not match.

Here’s another example:

(aaa*)\g<1>\g<1>*

2

CSE 30151 Spring 2025 Course Project 4

This recognizes the language {an | n is not prime}. Do you see why?
There’s no speed requirement for bgrep, so you have considerable latitude in how you implement

backreferences. You’re not even required to continue using NFAs, but if you do, you can convert
each backreference \g<k> into the following NFA:

copy(k)

where copy(k) is a special transition, like open(k) and close(k) from CP3.
In CP1, you wrote a function to test whether a NFA M accepts a string w using a search

through the graph of configurations (q, i), where q ∈ Q and 0 ≤ i ≤ |w|. Suppose that the current

configuration is (q, i) and the contents of group k is gk. If there is a transition q
copy(k)

−−−−−−→ r, we can
check whether wi · · ·wi+|gk|−1 = gk. If so, we can create a new configuration (r, i+ |gk|). But to do
this, we need to be able to know what gk is, and our configurations don’t contain this information.
So, we can redefine configurations to include information about where groups have been opened
and closed so far.

For example, consider again the regular expression (aaa*)\g<1>\g<1>*. This is equivalent to
the NFA shown in Figure 1. On string aaaaaa, the graph of configurations is shown in Figure 2.
Each node is a configuration, which now includes not only a state and string position, but also
information about the start and end of each group if it is known. Note that there are now two
configurations for state q6 and position 6, because there are two ways to get there that have two
different contents for group 1.

Modify your NFA matching function to handle backreferences. You can use the method sketched
above, or some other method. Depending on how much information you put into configurations,
you may or may not need to watch out that regular expressions like ()* don’t cause an infinite
loop. (The test script includes a test for this, so if the tests don’t hang, then there’s nothing to
worry about.)

Finally, write a program called bgrep (backtracking grep) that has the same usage as agrep
but allows backreferences inside regular expressions, as described above. Run tests/test-cp4.sh

to test it.

3 SAT solver

Adding backreferences to regular expressions increases their power a lot; in fact, it makes matching
NP-complete. Write a program that demonstrates this by reducing Boolean satisfiability to regular
expression matching with backreferences.

sat to re cnf-file regexp-file string-file

• cnf-file : name of file containing formula ϕ in conjunctive normal form (see below)

• regexp-file : name of file to write regular expression α to (see below)

• string-file : name of file to write string w to (see below)

• Effect: Write α and w such that ϕ is satisfiable if and only if w matches α.

The cnf-file has one line per clause.1 Each line is a white-space separated list of integers. An
integer i > 0 stands for the literal xi, and an integer i < 0 stands for the literal xi. For example, the
formula (x1∨x1∨x2)∧(x1∨x2∨x2)∧(x1∨x2∨x2) is specified by the file (examples/sipser-phi.cnf):

1This is a simplified version of the DIMACS CNF format, a standard format for SAT solvers.

3

CSE 30151 Spring 2025 Course Project 4

q1 q2
open(1)

q3
a

q4
a

a

q5
close(1)

q6
copy(1)

copy(1)

Figure 1: NFA equivalent to the regular expression (aaa*)\g<1>\g<1>*. Useless epsilon transitions
are omitted for simplicity.

q1, 0
1 : (,)

start

q2, 0
1 : (0,)

q3, 1
1 : (0,)

q4, 2
1 : (0,)

q5, 2
1 : (0, 2)

q4, 3
1 : (0,)

q5, 3
1 : (0, 3)

q4, 4
1 : (0,)

q5, 4
1 : (0, 4)

q6, 4
1 : (0, 2)

q4, 5
1 : (0,)

q5, 5
1 : (0, 5)

q4, 6
1 : (0,)

q5, 6
1 : (0, 6)

q6, 6
1 : (0, 3)

q6, 6
1 : (0, 2)

Figure 2: Graph of configuration for the NFA of Figure 1 and the input string aaaaaa.

4

CSE 30151 Spring 2025 Course Project 4

1 1 2

-1 -2 -2

-1 2 2

If the formula is satisfiable, then bgrep run on the regular expression and string should print
something:

$ bin/solve_sat examples/sipser-phi.cnf

satisfiable

$ cp4/sat_to_re examples/sipser-phi.cnf regexp string

$ bin/bgrep -f regexp string

something

(For this to work, you should use our bgrep. The -f option to bgrep tells it to read the regular
expression from a file instead of the command line.) But if the formula is satisfiable, then bgrep

run on the regular expression and string should print nothing:

$ solve_sat examples/unsat-2.cnf

unsatisfiable

$ cp4/sat_to_re examples/unsat-2.cnf regexp string

$ bin/bgrep -f regexp string

The test script tests/test-cp4.sh does this for several example formulas.
The test script also measures the running time of your program. Your program must run in

polynomial time; if it does, then this curve should look roughly linear:

n= 4096 t= 0.08 *

n= 8192 t= 0.16 *

n= 16384 t= 0.34 *

n= 32768 t= 0.78 *

n= 65536 t= 1.82 *

n= 131072 t= 3.69 *

Submission instructions

Your code should build and run on studentnn.cse.nd.edu. The automatic tester will clone your
repository, change to its root directory, run make -C cp4, and then run tests/test-cp4.sh. You’re
advised to try all of the above steps and ensure that all tests pass.

To submit your work:

1. Push your repository to GitHub.

2. In GitHub, create a new release by clicking on “Releases,” then “Draft a new release.”

3. Fill in “Release title” with cp4 if you’re submitting the whole assignment, cp4-1 if you’re
submitting part 1, cp4-2 if you’re submitting part 2, etc.

4. Click on “Choose a tag,” then type the same name you used for the release title, then “Create
new tag: cp4. . . on publish.”

5. Finally, click “Publish Release.”

5

CSE 30151 Spring 2025 Course Project 4

Rubric

Part 1 (parse re) 3
Part 2

matching backreferences 6
group matches multiple times 3
group matches no times 3
bgrep 3

Part 3
reading CNF formulas 3
correctness 6
polynomial time 3

Total 30

6

	Backreferences: Syntax
	Backreferences: Semantics
	SAT solver

