
Course Project 3

Replacement and Turing machines

CSE 30151 Spring 2025

Version of 2024-10-30
Due date 2025-04-04

In this project, you’ll reimplement a fragment of another Unix tool, sed, whose most common
application is using regular expressions to make changes to a file. For example, the command
msed -e ’s/(a*)(b*)/\g<1>#\g<2>/’ changes aaabbb to aaa#bbb. The \g<1> means “copy what
matched the first pair of parentheses.” You’ll implement sed’s s command as well as its b command
for conditional branching. Then, you’ll show that this fragment is Turing-complete by implementing
a translator from Turing machines to sed scripts.

You will need a correct solution for CP2 to complete this project. If your CP2 doesn’t
work correctly (or you just weren’t happy with it), you may use the official solution or another
team’s solution, as long as you properly cite your source.

Getting started

The project repository should include the following files (among others):

bin/

re_groups

msed

run_tm

examples/

sipser-m1.tm

sipser-m2.tm

...

tests/

test-cp3.sh

cp3/

Please place the programs that you write into the cp3/ subdirectory.

1 Groups

The subexpression enclosed by a matching pair of parentheses is called a group. The groups are
numbered starting from 1, based on the order of their left parentheses. For example:

(a|

2︷ ︸︸ ︷
(b|c))︸ ︷︷ ︸
1

(d|e)︸ ︷︷ ︸
3

*

1

CSE 30151 Spring 2025 Course Project 3

Many regular expression libraries let you retrieve the contents of a group after a successful match.
For example, when the above regular expression matches string ade, group 1 has contents a.

It’s possible for a group to match no substring or more than one substring. In the above example,
group 2 matches no substring, whereas group 3 matches two substrings (d and e). For this project,
you can treat a group that matches no substring as containing ε. A group matching more than one
substring is treated as containing the last substring (in this case, e).

1.1 Parser

Extend your regular expression parser so that groups appear in the abstract syntax tree. That is,
your parse_re must work like this:

$ cp3/parse_re ’(a|(b|c))(d|e)*’

concat(group(1,union(symbol("a"),group(2,union(symbol("b"),symbol("c"))))),star(group(3,union(symbol("d"),symbol("e")))))

$ cp3/parse_re ’(())’

group(1,group(2,epsilon()))

(If you want bin/parse_re to output groups, pass it the -g option.)
To do this, modify the parse table as follows:

input parse stack semantic stack
read peek pop push pop push

delete row: ε {(} P (E) ε ε
add row: ε {(} P (E) group(k) ε ε
add row: ε T group(k) ε α group(k,α)

This requires some extra explanation. When the parser sees a P on the parse stack and a (in
the input, it pops the P and pushes (E) group(k) , where k is the next group number. Later,
when the parser sees group(k) on the parse stack, then on the semantic stack, it replaces the top
tree α with group(k,α). See Table 1 for an example run. Test your modified parser by running
tests/test-cp3.sh.

1.2 Capturing

Next, extend your regular expression matcher to capture contents of groups, and write a program
to demonstrate it:

re groups regexp string

• regexp : regular expression

• string : input string

• Output:

– If regexp matches string, prints accept followed by any matching groups, one per line
(see below for format)

– Otherwise, prints reject

For example,

2

CSE 30151 Spring 2025 Course Project 3

state input parse stack semantic stack

1 qstart (())⊣ ε
2 qloop (())⊣ E$
3 qloop (())⊣ TE’$
4 qloop (())⊣ FT’E’$
5 qloop (())⊣ PF’T’E’$
6 qloop (())⊣ (E) group(1) F’T’E’$
7 qloop ())⊣ E) group(1) F’T’E’$
8 qloop ())⊣ TE’) group(1) F’T’E’$
9 qloop ())⊣ FT’E’) group(1) F’T’E’$
10 qloop ())⊣ PF’T’E’) group(1) F’T’E’$
11 qloop ())⊣ (E) group(2) F’T’E’) group(1) F’T’E’$
12 qloop))⊣ E) group(2) F’T’E’) group(1) F’T’E’$
13 qloop))⊣ TE’) group(2) F’T’E’) group(1) F’T’E’$
14 qloop))⊣ E’) group(2) F’T’E’) group(1) F’T’E’$ epsilon()

15 qloop))⊣) group(2) F’T’E’) group(1) F’T’E’$ epsilon()

16 qloop)⊣ group(2) F’T’E’) group(1) F’T’E’$ epsilon()

17 qloop)⊣ F’T’E’) group(1) F’T’E’$ group(2,epsilon())

18 qloop)⊣ T’E’) group(1) F’T’E’$ group(2,epsilon())

19 qloop)⊣ E’) group(1) F’T’E’$ group(2,epsilon())

20 qloop)⊣) group(1) F’T’E’$ group(2,epsilon())

21 qloop ⊣ group(1) F’T’E’$ group(2,epsilon())

22 qloop ⊣ F’T’E’$ group(1,group(2,epsilon()))

23 qloop ⊣ T’E’$ group(1,group(2,epsilon()))

24 qloop ⊣ E’$ group(1,group(2,epsilon()))

25 qloop ⊣ $ group(1,group(2,epsilon()))

26 qaccept ε ε group(1,group(2,epsilon()))

Table 1: Example run of the parser on the regular expression (()).

3

CSE 30151 Spring 2025 Course Project 3

$ cp3/re_groups ’(a|(b|c))(d|e)*’ ’ade’

accept

1:a

3:e

$ cp3/re_groups ’(a(b))’ ’ab’

accept

1:ab

2:b

Print just those groups that matched a substring, in numerical order. If there’s more than one way
for the groups to match, you can choose any of them (but this doesn’t happen in any of the supplied
tests). Run tests/test-cp3.sh to check your implementation.

There’s more than one way to do this, but here’s our suggestion. In CP2, parentheses didn’t
trigger any NFA operation. But now, we can make the parentheses around group k cause the
following operation to be performed:

M becomes M
open(k)

close(k)

close
(k)

where open(k) and close(k) are special transitions that don’t read any input. As far as the
matcher is concerned, they behave just like epsilon transitions.

The NFA matcher you wrote in CP1 returns an accepting path (if there is one). Now if the
accepting path contains open and close transitions, you can use them to reconstruct the contents
of each group. For example, if the path is

open(1) a close(1) open(3) d close(3) open(3) e close(3)

then by walking this path from left to right, you can determine that group 1 is a and group 3 is e.

2 A fragment of sed

Write a program called msed (for mini-sed), which can be run in two ways:

msed -f command file [file ...]

msed -e command [-e command ...] [file ...]

• -f command file specifies a file to read commands from

• -e command specifies a command; can be used more than once

• file ... specifies what file(s) to read strings from; if none, then read from stdin

If called using the first form, it executes the commands from command file, one per line. If
called using the second form, it executes the commands given using the -e option. If you want, you
can allow multiple uses of the -f option and/or mixing the -e and -f options; the real sed allows
this, but we won’t check for it.

The commands are executed in order. There are three kinds of commands:

4

CSE 30151 Spring 2025 Course Project 3

• The command :label , where label is any string not containing whitespace, doesn’t do
anything; it’s just a target for the branch command. It is an error for the same label to
appear twice.

• A branch command has the form /regexp/blabel . If the current string matches the regexp,
it jumps to label. Note that unlike the real sed, regular expressions must match the entire
line. It is an error for label to be undefined.

• A substitution command has the form s/regexp/replacement/. If the (entire) current string
matches the regexp, it replaces the current string with replacement. The replacement can
contain backreferences of the form \g<k> (where k is a positive integer), which expands to
the contents of group k.1

For example, the following script reverses strings over {a, b}:

s/((a|b)*)/^\g<1>/

:loop

s/((a|b)*)^(a|b)((a|b)*)/\g<3>\g<1>^\g<4>/

/(a|b)*^(a|b)(a|b)*/bloop

s/((a|b)*)^/\g<1>/

Line 1 inserts a ^ marker. Line 3 moves the character after the marker to the beginning of the
string. Line 4 checks whether there are any characters left; if so, it goes back to line 2. Finally, line
5 removes the marker. The provided bin/msed has a -v option to print out the steps:

$ bin/msed -v -f examples/reverse.sed

abab

1. subst abab -> ^abab

2. subst ^abab -> a^bab

3. branch 2

2. subst a^bab -> ba^ab

3. branch 2

2. subst ba^ab -> aba^b

3. branch 2

2. subst aba^b -> baba^

4. subst baba^ -> baba

baba

Test your implementation by running tests/test-cp3.sh.

3 Turing machines to sed

In this part, you will demosntrate that msed is Turing-complete by implementing a translation from
Turing machines to msed. Write a program called tm to sed that has the following usage:

tm_to_sed tm file

1You may be more familiar with the syntax \k, which is standard, but becomes complicated for k ≥ 10. This
syntax is from Python’s re module.

5

CSE 30151 Spring 2025 Course Project 3

• tm file : specification of a Turing machine (see below)

• Output: an msed script that is equivalent to tm file (see below)

Note that tm to sed does not read in any input strings, and it does not attempt to run the Turing
machine; it only translates the Turing machine into an equivalent msed script, as detailed below.

Turing machine file format The tm file must start with a header with six lines:

1. A whitespace-separated list of states, Q.

2. A whitespace-separated list of input symbols, Σ. It must be disjoint from Q, and it must not
contain (blank). Each symbol must be a single character.

3. A whitespace-separated list of tape symbols, Γ ⊇ Σ. It must be disjoint from Q, it must
contain (blank), and it should not include any of the special characters {^, [,]}. Each
symbol must be a single character.

4. The start state, q0 ∈ Q.

5. The accept state, qaccept ∈ Q.

6. The reject state, qreject ∈ Q.

The header is followed by transitions, one per line. Each one consists of five whitespace-separated
fields:

1. The state that the transition goes from.

2. The tape symbol that the transition reads.

3. The state that the transition goes to.

4. The tape symbol that the transition writes.

5. Either L or R to indicate the direction the head moves.

For every q ∈ Q except qaccept or qreject and for every a ∈ Σ, there must be at most one transition
from q on symbol a. States qaccept and qreject must have no outgoing transitions.

For example, the following Turing machine (M2 in the book, page 173)

q1 q2 q3

q4

q5

qreject qaccept

0 → ,R

→ R
x → R

x → R

0 → x,R

→ R

x → R→
L

0 → R

x → R

0 → x,R

→ R

0 → L
x → L

→
R

6

CSE 30151 Spring 2025 Course Project 3

is specified by the file (examples/sipser-m2.tm):

q1 q2 q3 q4 q5 qaccept qreject

0

0 x _

q1

qaccept

qreject

q1 0 q2 _ R

q1 x qreject x R

q1 _ qreject _ R

q2 0 q3 x R

q2 x q2 x R

q2 _ qaccept _ R

q3 0 q4 0 R

q3 x q3 x R

q3 _ q5 _ L

q4 0 q3 x R

q4 x q4 x R

q4 _ qreject _ R

q5 0 q5 0 L

q5 x q5 x L

q5 _ q2 _ R

See sipser-m1.tm for another example, which corresponds to the machine M1 in Sipser, page 174.

Operation The output of tm to sed (on stdout) must be an msed script that reads inputs strings,
one per line, and for each string, it simulates the Turing machine described in tm file. If the ma-
chine accepts, the script must output accept: followed (without whitespace) by the final contents
of the tape. If the machine rejects, the script must output reject by itself.

For example:

$ cp3/tm_to_sed examples/sipser-m2.tm > sipser-m2.sed

$ cp3/msed -f sipser-m2.sed

0

accept:___

00

accept:_x__

000

reject

0000

accept:_xxx__

The simulated Turing machine must follow the definition in Sipser. If the head is on the first
cell and moves left, it stays on the first cell. If a transition is missing, reject.

There’s more than one way to use msed to simulate a Turing machine. Our suggestion is to
follow Sipser’s encoding (p. 168–169) of Turing machine configurations as strings. You can encode
the state in the string, like he does, or you could encode the states as labels in the msed script.
In either case, you will need to use the s command to simulate the moves of the Turing machine.

7

CSE 30151 Spring 2025 Course Project 3

Since our Turing machine format does not allow the characters ^ [] as tape symbols, you are free
to use them in your encoding of configurations.

The test script tests/test-cp3.sh compares your tm to msed plus msed against run tm, a
direct Turing machine simulator. In other words, the following two commands must produce the
same output, except perhaps for different numbers of trailing blanks:

cp3/tm_to_sed tm file > sed file; echo string | cp3/msed -f sed file

echo string | bin/run_tm tm file

Submission instructions

Your code should build and run on studentnn.cse.nd.edu. The automatic tester will clone your
repository, change to its root directory, run make -C cp3, and then run tests/test-cp3.sh. You’re
advised to try all of the above steps and ensure that all tests pass.

To submit your work:

1. Push your repository to GitHub.

2. In GitHub, create a new release by clicking on “Releases,” then “Draft a new release.”

3. Fill in “Release title” with cp3 if you’re submitting the whole assignment, cp3-1 if you’re
submitting part 1, cp3-2 if you’re submitting part 2, etc.

4. Click on “Choose a tag,” then type the same name you used for the release title, then “Create
new tag: cp3. . . on publish.”

5. Finally, click “Publish Release.”

Rubric

Part 1
parse re 3
capturing groups 3
re groups 3

Part 2 (msed)
label/branch 3
substitution 6
time complexity 3

Part 3 (tm to sed)
reading TM file 3
correct conversion 6

Total 30

8

	Groups
	Parser
	Capturing

	A fragment of sed
	Turing machines to sed

